PKCα mediates TGFβ-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11

نویسندگان

  • Masakiyo Sakaguchi
  • Masahiro Miyazaki
  • Hiroyuki Sonegawa
  • Mariko Kashiwagi
  • Motoi Ohba
  • Toshio Kuroki
  • Masayoshi Namba
  • Nam-ho Huh
چکیده

Growth regulation of epithelial cells is of major concern because most human cancers arise from them. We demonstrated previously a novel signal pathway involving S100C/A11 for high Ca2+-induced growth inhibition of normal human keratinocytes (Sakaguchi, M., M. Miyazaki, M. Takaishi, Y. Sakaguchi, E. Makino, N. Kataoka, H. Yamada, M. Namba, and N.H. Huh. 2003. J. Cell Biol. 163:825-835). This paper addresses a question whether transforming growth factor beta (TGFbeta) shares the pathway with high Ca2+. On exposure of the cells to TGFbeta1, S100C/A11 was phosphorylated, bound to nucleolin, and transferred to the nucleus, resulting in induction of p21WAF1/CIP1 and p15INK4B through activation of Sp1. Protein kinase C alpha (PKCalpha) was shown to phosphorylate 10Thr of S100C/A11, which is a critical event for the signal transduction. The TGFbeta1-induced growth inhibition was almost completely mitigated when PKCalpha activity was blocked or when S100C/A11 was functionally sequestered. These results indicate that, in addition to the well-characterized Smad-mediated pathway, the PKCalpha-S100C/A11-mediated pathway is involved in and essential for the growth inhibition of normal human keratinocytes cells by TGFbeta1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S100C/A11 is a key mediator of Ca2+-induced growth inhibition of human epidermal keratinocytes

An increase in extracellular Ca2+ induces growth arrest and differentiation of human keratinocytes in culture. We examined possible involvement of S100C/A11 in this growth regulation. On exposure of the cells to high Ca2+, S100C/A11 was specifically phosphorylated at 10Thr and 94Ser. Phosphorylation facilitated the binding of S100C/A11 to nucleolin, resulting in nuclear translocation of S100C/A...

متن کامل

Involvement of deterioration in S100C/A11-mediated pathway in resistance of human squamous cancer cell lines to TGFbeta-induced growth suppression.

Recently, we demonstrated that S100C/A11 comprises an essential pathway for growth suppression by TGFbeta in normal human keratinocytes. Nuclear transfer of S100C/A11 was a hallmark of the activation of the process. In the present study, we examined the possible deterioration in the pathway in human squamous cancer cell lines, focusing on intracellular localization of S100C/A11 and its function...

متن کامل

Regulation of vascular smooth muscle cell calcification by syndecan-4/FGF-2/PKCα signalling and cross-talk with TGFβ

Aims Vascular calcification is a major cause of morbidity and mortality. Fibroblast growth factor-2 (FGF-2) plays an instructive role in osteogenesis and bone development, but its role in vascular calcification was unknown. Therefore, we investigated the involvement of FGF-2 in vascular calcification and determined the mechanism by which it regulates this process. Methods and results We demon...

متن کامل

The TGFβ-induced phosphorylation and activation of p38 mitogen-activated protein kinase is mediated by MAP3K4 and MAP3K10 but not TAK1

The signalling pathways downstream of the transforming growth factor beta (TGFβ) family of cytokines play critical roles in all aspects of cellular homeostasis. The phosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) has been implicated in TGFβ-induced epithelial-to-mesenchymal transition and apoptosis. The precise molecular mechanisms by which TGFβ cytokines induce th...

متن کامل

A decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes

The mechanism by which transforming growth factor-β (TGFβ) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 164  شماره 

صفحات  -

تاریخ انتشار 2004